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FLEXURAL WRINKLING OF HONEYCOMB
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Abstrad-A theory is presented for the wrinkling of honeycomb sandwich beams, which satisfies the
governing elasticity equations for the orthotropic core and laminated faces. Asingle eiahth order ordinary
differential equation is obtained which is solved by assuming a simple sine function for the displacement of
tbe buckled face. Minimum critical loads are found numerically, and results are given for typical beams
which show the dependence on face plate thickness and core thickness. Acomparison is made with other
approximate solutions.

NOTATION
A in-plane stiffness

constants
coupling stiffness term
half-width of beam
constants
core modulus in compression
ftexural stiffness term
Young's modulus
force in face plate per unit width
core thickness between face plate mid-planes
functions arising from integrating core equations
core shear modulus
beam length
moment in face plate per unit width
force in face plate per unit width
number of half waves
defined below eqn (20)
face plate thickness
displacement in x direction
displacement in z direction
axial and normal co-ordinate axes
core sbear strain
direct strains
face plate curvature
direct stresses
core shear stress

Subscripts
o prior to wrinkling
I after wrinkling

Superscripl
F face plate variables

l. INTRODUCTION

One possible mode of failure of a thin faced sandwich beam subjected to bending is the
localized buckling (wrinkling) of the compression face, This paper presents a small deflection
analysis of the problem, where the sandwich beam has a specially orthotropic core and
laminated cross-ply faces. The governing elasticity equations are considered separately for the
core and faces and then combined through the displacement boundary conditions at the
common inter-face. They are manipulated to form a single governing differential equation which
is then solved by assuming a sinusoidal variation for the normal displacement of the face during
wrinkling. Numerical results are obtained for beams having typical catbon fibre faces and
honeycomb cores, which show the variation of critical load with face plate thickness and core
thickness. Comparisons are made with other approximate solutions in the literature for
isotropic faces and cores.

The work is an extension of the theory given in Ref, [1] for the buckling of columns and has
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important practical applications. For example, a helicopter rotor blade may be manufactured
with a full depth honeycomb core and one of the design constraints could be the possibility of
wrinkling of the compression face when the blade is subjected to bending. Furthermore,
modern blade designs use unidirectional glass fibre reinforced plastic as the main bending
material with a ±4So fibre weave to take the torsional loads so that it is important to take into
account the laminated nature of the faces.

2. THEORY

Figure I shows part of a sandwich beam in which the effect of a uniform bending moment is
represented by a compressive force F per unit width on the top face and a tension force F on
the bottom face. The honeycomb core is specially orthotropic with zero direct stiffness in the x
direction so that it does not contribute to reacting the bending moment and is assumed to give
continuous support to the faces. The problem may be considered as a two dimensional one in
generalised plane stress in the same way as the sandwich column under axial compression [I].
The governing equations may be considered in two parts; those prior to wrinkling and those
after wrinkling. Prior to wrinkling it will be assumed that the faces are simply compressed and
extended with displacements ul. This implies that they are held straight by the core and that
therefore wl =O. It will be further assumed that the core stresses induced during this initial
phase are small and can be neglected.

We shall take the faces to be of laminated construction, with each individual ply being
specially orthotropic with respect to the x axis. The full set of stress (Ioad)-strain equations can
be obtained from Ref. [2], but they are reduced, as in Ref. [I] for the two dimensional
orthotropic cases to give (prior to wrinkling),

with

(1)

_ aul
E",o-ax- and (2)

But since we have taken wl = 0 it follows that K",O = 0 with the subsequent simplification of
eqn (I).

In the wrinkled condition, the stress-strain, strain-displacement and equilibrium equations
for the orthotropic core (0''''1 = 0) can be written.

aTnl =0'
iJz '

whilst for the compression face we have,

(3)

(4)

(5)

(N",o+ N",I) =A(E",o+ E",I) + BK.I

(M.o+ M•• )= B(E",o + E.I) + DK""

(6)

(7)

(8)

(9)

(10)

Note that the last two equations represent the equilibrium conditions in the x and z directions
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Fig. I. Beam geometry.
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respectively, and that they contain the effects of the stresses from the core acting at the
interface. However, in eqn (10) the moment due to the offset core shear stress 'Tnt is neglected.
This approximation is reasonable providing the faces are thin compared with the core.

We can now manipulate the above face plate equations to give a set of equations in terms of
the small changes which occur during wrinkling. Combining (1) with (6) and (7) and remember­
ing that KxO =0 gives,

Equations (2) and (8) combine to give,

iJut
Exl =-a,x;

(11)

(12)

whilst with (iJNxoliJx) = (iJ2MxoliJx2
) = 0 and NX1 small compared with Nxo, eqns (9) and (10)

reduce to

(13)

(14)

Equations (3H5) for the core and eqns (1IHI4) for the faces form the basic set of
equations. They will now be manipulated to form one governing differential equation for the
wrinkling problem. Since it is no longer necessary to distinguish between suffix 0 and suffix 1
they will be dropped, except for Nxo.

Firstly, because of the simplified form of the orthotropic core equations they can be
integrated. Equations (5) then become,

dTxz K
U =-z-+ I

Z dx

and this can be used in the first of eqns (3) with (4) to give

Similarly u can be obtained from (3) and (4) to give

(15)

(16)

(17)

It is now assumed that the tension face remains unstrained during wrinkling so that the
functions K2 and K3 are both zero since u = w = 0 when z = o. Equations (16) and (17) then
give the variations of wand u in the core and they can be used for the compressed face plate
when z= h.



648

and

A. J. GUTIERREZ and J. P. H. WEBBER

Equations (11) and (12) are now used in the face equilibrium eqns (13) and (14) to give,

(18)

(19)

The condition of displacement compatibility between core and face plate is used when eqns (16)
and (17) are substituted into eqns (18) and (19) with eqn (15). This yields two simultaneous
ordinary differential equations in K. and (1'... ):.". Then by suitable differentiation and sub­
stitution we finally obtain the following governing eighth order equation for (Tn):.'"

(20)

with

and

h
3

[AD-B
2
]

q·=6C Ah+2B

2h [AD- B2] FAh 3

q2 =Lx: Ah +2B - 6C(Ah +2B)

[
Bh +2D] h [2Ah +3B] 2AhF

q3= Ah+2B +3 Ah+2B - Lx:(Ah+2B)

2AC 2F 2C
q4 =Ln(Ah +2B) Ah +2B; g, =h(Ah +2B)

and where the load Nxo has been replaced by - F (Fig. 1).
This equation is conveniently solved by assuming that wt, for the wrinkled face, varies as

an sin (n7rx/l) from which it follows from eqn (18) that (Tx:):." must have the form
bn cos (n7rx//). Using this in eqn (20), we find that the condition for wrinkling is given by,

(
n7r)8 (n7r)6 (n7r)4 (n7r)2q. -/ +q2 -/ +q3 -/ +q4 -/ +q,=O

for n =1, 2 or 3... in turn.

(21)

3. NUMERICAL RESULTS

A computer programme was written to evaluate F from eqn (21) for various values of n.
Figure 2 shows typical curves for a sandwich beam with cross-ply carbon fibre reinforced
plastic (CFRP) faces of total thickness t =0.3 mm and core thickness h =25 mm. The values
for the mechanical properties used in the analysis are shown in the figure. The effect of
including the adhesive layer is to increase the critical loads as would be expected, and minimum
values are reached when n is in the region of 75. This corresponds to a half wave length of
wrinkle =5.33 mm which, in some cases, may be close to the cell size of the honeycomb core.
This raises the question of how valid it is under these circumstances to replace the core by a
continuum. However, bearing in mind the staggered geometry of the cells, then the unsupported
part of the face is not continuous across the width of the beam. Since the buckled wave-form is
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invariant in the width direction it follows that some degree of support will be maintained within
the wrinkle for all possible wavelengths. This assumes, of course, that there exists a number of
cells across the beam width. Nevertheless, when the buckled wave-length is found to be close
to the cell size, it would be advisable to check for intra-cellular buckling (dimpling).

It is interesting to compare the above results with the column buckling analysis in Ref. [I]
,(Fig. 2). To make a direct comparison, the critical column end load has to be halved since it is
divided equally between the two faces. The resulting symmetrical wrinkling loads are shown in
Fig. 2 and it is seen that they follow the general pattern for the beam but with a lower minimum.
Even so, it appears that for this particular example the column analysis gives a good
approximation to the critical beam wrinkling load.

Minimum wrinkling loads were obtained for a wide range of face plate thicknesses and core
thicknesses for the same OO/9Cr lay-up and mechanical properties as given in Fig. 2. The results
are presented in Fig. 3 where it can be seen that increasing the face thickness leads to an
increase in the wrinkling force as expected. On the other hand, an increase in core thickness
has the opposite effect due to the decrease in its support flexibility. The dotted lines show the
effect of including the adhesive layer in the analysis which is significant when the faces are very
thin.

Two approximate methods of solving the flexural wrinkling problem for isotropic faces are
now compared with the present solution. The first takes the Timoshenko [3] solution for a strut
on a Winkler foundation of modulus {J =(2bC/h) where the critical buckling load (P) is given
by,

(22)

In fact, this same result can be obtained from the column analysis of Ref. [1] eqn (33) where it
is noted that when symmetrical wrinkling occurs, the mid-plane of the column remains flat. This
mid-plane is then taken as the tension face in the beam case so that the equivalent beam core
thickness is half that of the column thickness. The second method used for comparison is given
in Ref. [4]. However, in this case the core is isotropic, and although, in the analysis, the core
equations are satisfied, only the face equilibrium equation in the direction normal to the face is
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Fig. 4. Comparison with other approximate solutions.
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used; the longitudinal equation (eqn 9) is not taken into account. Figure 4 shows the critical load
versus face plate thickness for each of the solutions, for the case of an isotropic face. The
mechanical constants used in the analyses are given in the figure. There is considerable
difference between them, particularly at low thickness values. Chong and Hartsock's isotropic
core solution over-estimates the critical loads whilst the Timoshenko and symmetrical column
solution underestimates the loads. This latter solution does not take into account the effect of
shear stiffness in the core and so one would expect it to be lower than the exact solution. On
the other hand, it is not possible to say whether the disagreement with Chong and Hartsock's
solution is due mainly to the omission of eqn (9) or to the difference in the type of core. Most
certainly both aspects must contribute and the results for this particular example show that it
would not be wise to design honeycomb beams on the basis of existing theories for beams with
isotropic cores.

4. CONCLUSIONS

A theoretical solution has been given for flexural wrinkling of honeycomb sandwich beams.
The governing elasticity equations for the core and laminated face plates have been satisfied,
with the assumption that the face plates remain straight before wrinkling and that the associated
core stresses are negligible. The effect of the adhesive film bonding the faces to the core has
been included and this was found to be important for very thin faces.

Numerical results were compared with results obtained from two approximate solutions,
one of which was found to over-estimate the wrinkling load and the other to under-estimate the
load. The largest percentage differences were found to occur when the face plates were very
thin.
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